Skeletal System

- Bone
- Cartilage
- Ligaments

Outline

- Osteology - Study of bone tissue
 - Functions
 - Cells, tissues
 - Growth, development
 - Osteopathology

- Organization of the Skeleton
 - Axial Division
 - Appendicular Division
 - Articulations

Functions of the Skeletal System

- Framework
- Protection
- Biochemical Storage
- Blood Cell Formation
Structure of Bone - Cells -

Organization of Bone Tissue

Biochemistry of Bone Tissue

Matrix

Cells (2%)
Collagen (33%)
Mineral salts (~60%)

\[\text{Ca}_3(\text{PO}_4)_2 + \text{Ca(OH)}_2 = \text{hydroxyapatite} \]
Figure 7.15

Bone Calcium Regulation

- Calcium is consumed, blood calcium levels increase.
- Thyroid gland releases calcitonin.
- Osteoblasts deposit calcium in bones.
- Blood calcium levels are returned to normal (homeostasis).
- Osteoclasts break down bone to release calcium.
- Parathyroid gland releases parathyroid hormone.
- Blood calcium levels are low.
OSTEOGENESIS

Two methods

• Intramembranous (Skull, mandible, clavicle, patella)
 – originate within sheets of connective tissue

• Endochondral (longbones)
 – begin as models of hyaline cartilage that are replaced by bone
Nutrition and Bone Development

- Vitamin A
 - necessary for osteoblast and osteoclast activity
- Vitamin C
 - necessary for collagen synthesis

Hormones and Bone

- Growth Hormone (GH)
 - stimulates epiphyseal cartilage cell division
- Deficiency of GH
 - pituitary dwarfism
- Excess GH
 - pituitary gigantism in children
 - acromegaly in adults
Hormones and Bone

- Thyroid hormone
 - stimulates cartilage replacement in the epiphyseal disks
- Sex steroids
 - promote formation of bone tissue close the epiphyseal disk

Physical Factors Affecting Bone

- Physical stress (bending, twisting, compressing)
 - stimulates bone growth
- Weight bearing exercise
 - stimulates bone tissue to thicken and strengthen
 - hypertrophy
- Lack of exercise
 - leads to bone wasting
 - atrophy
Nutrition and Bone Development

- Vitamin D
 - necessary to absorb calcium in the small intestine
- Vitamin D deficiency
 - leads in rickets in children
 - osteomalacia in adults
Axial Skeleton

- head, neck, and trunk
- Skull
 - cranium and facial bones
- Hyoid bone
 - anchors the tongue
- Vertebral column: upright posture
 - Supports the head superior to trunk
- Thoracic cage
 - ribs and sternum

Appendicular Skeleton

- Pectoral girdles, upper extremities, pelvic girdle, lower extremities