Prokaryotic DNA

Organization of DNA in prokaryotes

- tightly coiled ("supercoiled")
- ATP required
Eukaryotic DNA Organization

- Histones
- Nucleosomes
- Chromatin fiber
- Euchromatin & heterochromatin
- Condensation, duplication

Hydrogen bond

- Remember that the bases pair in a complementary fashion A=T or A=U (RNA), G=C
- Hydrogen bonds hold bases together
- Three for G-C, two for A-T

DNA Replication

- Requires DNA polymerase and helicase
- Semi-conservative
DNA REPLICATION

“Other” DNA: Plasmids

(Microbial) Gene Expression
Transcription

Requires RNA Polymerase

gene

rRNA

mRNA

tRNA

xcr

How does RNAP know where to begin transcription?

promoters

-35

TGGACA

-10

TATAAT

AACTGT

ATATTA

σ

β

α

β

α
RNA PROCESSING

- Adding a cap and tail
- Removing introns
- Splicing exons together
- Final product is mRNA

Translation

mRNA

- carries coding information for amino acids = codons
 - 3 adjacent nucleotide bases
 - e.g. AAA, AGU, etc.
Genetic Code

Stop Codons

- a.k.a. *nonsense* codons
 - **UAG** - amber
 - **UGA** - opal
 - **UAA** - ochre

Transfer RNA (tRNA)

Anticodon

Amino acid attachment site

Hydrogen bond

RNA polynucleotide chain
Pro- & Eukaryotic Ribosomes Compared

5S rRNA
23S rRNA + 33 polypeptides
Prokaryotic 70S ribosome

16S rRNA + 21 polypeptides
35 subunit

5S rRNA
23S rRNA + 34 polypeptides
Eukaryotic 80S ribosome

16S rRNA + > 21 polypeptides
60S subunit

5S rRNA
25S rRNA + 34 polypeptides

40S subunit

Pro- & Eukaryotic Ribosomes Compared

Bio 41 Fall 03

Protein synthesis
Polypeptide
Amino acid
P site
Anticodon
A site
Codons
Codon recognition
Peptide bond formation
New peptide bond
mRNA movement
mRNA
Elongation
Translocation

Polyribosomes

Bauman (2003) Microbiology Fig. 7.13
Prokaryotic Gene Organization: Operons

Phenotype vs. Genotype

Wild-type vs. mutant
Types of mutations

- **Wild-type DNA** (wild-type phenotype)
- **Mutant DNA** (mutant phenotype)
 - **Forward mutation**
 - **Backward mutation**
 - **Suppressor mutation**

Mechanisms of Mutations

- Can be divided into two general categories
 - **Base Substitutions**
 - **Base Deletions/Insertions**
- Can result in changes in the amino acids in proteins

Mutations

- **DNA**
- **mRNA**
- **Amino acid**

- **Wild type**
 - **A U**
 - Phenylalanine

- **Silent point mutation**
 - **A U**
 - Phenylalanine

- **Suppressor mutation**
 - **A U**
 - Phenylalanine

- **Backward mutation**
 - **A U**
 - Phenylalanine

- **Forward mutation**
 - **A U**
 - Phenylalanine

- **Suppressor mutation**
 - **A U**
 - Phenylalanine
Mutations

DNA mRNA amino acid

wild type

phenylalanine

missense point mutation

leucine

Mutations

DNA mRNA amino acid

wild type

phenylalanine

nonsense point mutation

STOP

Nucleotide Substitution: Spontaneous Error

mRNA

Protein Met Lys Phe Gly Ala

Base substitution

Met Lys Phe Ser Ala
Nucleotide Substitution: Base Analogs

Nucleotide Substitution: Thymine Dimers

Nucleotide Substitution: T-T Dimer Repair
Frameshift Mutations

- Usually have disastrous effects
- Change the reading frame of the genetic message

Cell cycle

- regulatory proteins
 - E.g. Cyclins

Carcinogens

- mutagens
Ames test

- Minimal - histidine plate
- Disk with test chemical
- Incubate O/N at 37°C
- Revertant colonies (mutants)
- Positive result
- Negative result

Unique Features of Bacterial Genetics

- Single genome per cell
- Fast growth rates
- Enormous numbers of offspring
- Easily sequenced
- Unique methods of recombination

Bacterial Recombination

- Vertical vs. Horizontal Gene Transfer
 - Transformation
 - Transduction
 - Conjugation
 - Transposons
Transposons

- Transposable element
- Copying and insertion
- Copy of transposable element
- Gene F interrupted and no longer functional
- Transposon
- Transposable element
- Other genes
- Transposable element

Palindromes

- RACE CAR