Proteins are made from amino acids
- each has an amino group and carboxyl group
- each has unique side chain
 - some larger size-wise, charged, polar, non-polar, rings, etc.
 - R-group determines properties (behavior) of aa in protein

- 20 total amino acids needed by humans for protein synthesis
- **Essential**: MUST ingest! Body can’t make (or can’t make sufficient amounts)!
- **Nonessential**: not necessary to ingest in diet; body can make these
- **Conditionally essential**
 - under normal circumstances (i.e. healthy adult) body can make
 - under some circumstances, must ingest in diet to meet needs
 - e.g. tyrosine made from phenylalanine: if Phe intake low, need to make sure to ingest tyrosine in diet
 - other AAs become essential in times of severe stress or illness
Peptide bond formation

- to join individual aas to make a polypeptide necessary to make “peptide bond”
- carboxyl end of first joined to amino end of next
- condensation reaction (water released)
- expensive to cell! Each peptide bond “costs” 4 GTP!
• **Primary structure**: amino acid sequence
 • Protein structure
 • Chain of amino acids
 • Sequence of amino acids determines shape
 • Shape of protein determines function—remember enzymes!!!

• **Secondary structures** = alpha helix or beta sheet
• **tertiary** structure = 3D folding
• **quaternary** = arrangement / interaction of multiple polypeptide chains
Protein denaturation

- 3-D structure essential to protein function
- several factors can disrupt bonds holding protein in shape -> DENATURE
 - heat
 - pH (acids, bases)
 - oxidation
 - mechanical agitation
- denaturation = first step to digestion
 - digestive enzymes can access more easily
Protein functions

• **structural, mechanical**
 - tons of structural proteins - think connective tissues keratin, collagen (most abundant protein in mammals!)
 - mechanical - power muscle contraction, flagella

• **enzymes** - necessary for every useful biological reaction!
 - food contains enzymes, but our stomach acid denatures them

• **hormones** - chemical messengers acting at remote locations
 - e.g. insulin, glucagon

• **antibodies** - bind invaders, target them for destruction

• **fluid balance** - proteins in blood maintain correct level of fluid in vascular system
 - e.g. albumin, globulin
 - if not enough protein fluid leaks out of vessels into tissue - edema

• **acid-base balance** - proteins serve as buffers to keep overall pH at neutral (7)
 - in acidic environment, can pick up excess H+ ions to raise pH
 - in alkaline environment, can donate H+ to lower pH

• **channels, pumps** - regulate passage of molecules across membranes

• **transport** - can act as carriers e.g. lipoproteins carry lipids around, carry fat-soluble vitamins around e.g. Vit A
 - transferrin carries iron around
Proteins in the Diet

• Protein quality
 – Complete proteins
 • supply all essential amino acids
 • animal proteins, soy proteins
 – Incomplete proteins
 • low in one or more essential amino acids
 • most plant proteins
 – Complementary proteins
 • 2 incomplete proteins = complete protein

• Evaluating protein quality
 • Amino acid composition
 • Digestibility
 • Protein Digestibility-Corrected Amino Acid Score (PDCAAS)
 • Used to determine %DV
• Protein and amino acid supplements
 • Generally not needed with risks unknown

• Complete proteins a.k.a. high-quality
 • provide all the essential amino acids in proportions needed by body
 • also provide other (nonessential) amino acids as nitrogen source
 • animal foods provide complete protein (exception is gelatin)
 • only plant product that provides complete protein = soybeans

• Incomplete proteins a.k.a. low-quality
 • lack adequate amounts of one or more essential amino acid

• Complementary proteins
 • two protein sources that alone are incomplete but make a complete protein when eaten together
 • e.g. legumes + grains
 • e.g. legumes + nuts, seeds
 • mostly a concern for vegetarians

• proteins add structure, flavor, texture
• protein hydrolysates = proteins partially digested with enzymes; now are shorter polypeptides and some amino acids
 • often added as thickeners, stabilizers, flavoring
• amino acids also sometimes added as flavor enhancers
 • ex. Mono sodium glutamate - Comes from seaweed.
Recommended protein intake

Convert weight to kilograms
(pounds ÷ 2.2)
Multiply kg x 0.8 = protein RDA in g
About 15% caloric intake

average man = 58 g
average woman = 46 g
Americans’ average actual intake = 75 g daily!

Calculating recommended protein intake
• based on body weight
• weight in kg * 0.8
• NOTE: assumes not using protein for energy, using protein only for protein synthesis!
• energy intake should be no more than 15% from protein (higher than RDA usually)
• Recommended protein intake
 • Adult RDA = 0.8 grams/kilogram body weight
 • Infant RDA = ~ 1.5 grams/kilogram body weight
Protein Basics

Proteins in the Body

- Protein synthesis
 - Directed by cellular DNA
 - Amino acid pool maintained by ingestion of dietary proteins containing the essential amino acids and the synthesis of other amino acids from those.

Protein Digestion
- Stomach
 - Proteins are denatured by hydrochloric acid
 - Pepsin begins digestion
- Small intestine
 - Pancreatic and intestinal proteases and peptidases complete digestion
 - Amino acids absorbed into the bloodstream
- Protein excretion
 - Deamination of amino acids
 - Amino groups converted to urea for excretion
- Nitrogen balance
 - Nitrogen intake vs. nitrogen output
Protein digestion

NOTE: most proteases first secreted as proenzymes that are later cleaved/modified to their active form, otherwise would digest cells making enzyme

- no protein digestion in **mouth**

- **Stomach:**
 - HCl denatures proteins
 - pepsinogen = proenzyme, cleaved to pepsin by HCl
 - breaks down ~10 - 20% proteins

- **small intestine**
 - majority of protein digestion here
 - contribution by pancreatic enzymes
 - majority of digestion done by enzymes from microvilli
 - to tripeptides, dipeptides, some individual AAs
Protein absorption

- tripeptides and dipeptides and AAs absorbed into intestinal cells
- intestinal cells break into individual amino acids
- individual amino acids absorbed into bloodstream (~99% in this form)
- rare for peptides to be absorbed, never whole proteins - cause severe allergic reactions
- any undigested protein excreted in feces