Trace minerals

- iron
- zinc
- copper
- fluoride
- selenium
- iodine
- chromium
- manganese
- molybdenum

Trace minerals

• needed in tiny amounts (less than 100 mg/day)

• ESSENTIAL! General functions:
 • cofactors
 • hormone function
 • participate in chemical reactions

• good vs. toxic amounts sometimes not far apart
 • FDA cannot reg amounts of trace minerals in supplements
 • important not to habitually ingest >100% daily value

• interactions between trace minerals common, easily leads to imbalance
 • variety of foods good!

• TM content of foods varies with soil, water composition, processing

Page 415-416

Not covering all trace minerals- only iron, zinc and iodide
Iron has special property: transfers electrons very easily
ALL cells of body require iron!!
Factors listed are among most important - when iron imbalance problems more obvious in these areas

• **Oxygen transport**
 - iron is center of **heme molecule**: binds O\(_2\) in **hemoglobin & myoglobin**
 - most of iron in body in hemoglobin & myoglobin

• **Enzyme function**
 - can serve as **cofactors**: (inorganic components of enzymes)
 - help make up **cytochromes**
 - first step of Kreb’s cycle requires iron-containing enzyme [explains fatigue with deficiency!]

• **Immune Function**
 - enzymes in **WBCs** require iron

• **Brain function**
 - enzymes responsible for making **neurotransmitters** require iron
Iron Intake & Absorption

- Iron status
- GI function
- Iron in food
 - heme
 - non-heme

Iron absorption: in general, varies between 1% - 50%!

- Iron status
 - absorption more efficient when need higher

- GI function
 - MUST have enough HCl in stomach
 - HCl production decreases in elderly - decreases iron absorption
 - antacid use hinders iron absorption

- Iron in food comes in two forms
 - heme
 - found in hemoglobin or myoglobin
 - only present in animal tissue
 - much greater bioavailability
 - non-heme
 - found in plant foods, iron-fortified foods (example in book- spinach!!!)
 - less bioavailable

 - Ferrous iron (+2) Vs. Ferric iron (+3)
 - +2 is better absorbed
 - Acid in the stomach promotes the conversion of +3 to +2

Recommendations for iron intake:
 - men & postmenopausal women: 8 mg/day
 - premenopausal women: 18 mg/day

Sources of iron in diet
 - clams
 - beef
 - oysters
 - fortified cereals
 - cooking in an iron skillet
 - NOT GOOD: dairy
Dietary factors that affect iron absorption

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>Enhancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber & phytate</td>
<td>Vitamin C</td>
</tr>
<tr>
<td>Calcium & phosphorus</td>
<td>MFP factor</td>
</tr>
<tr>
<td>Tannins</td>
<td>HCl</td>
</tr>
<tr>
<td>Polyphenols</td>
<td>Citric, malic, & lactic acid</td>
</tr>
<tr>
<td>Oxalate</td>
<td></td>
</tr>
</tbody>
</table>

Inhibitors
- **Fiber, phytate**
 - phytate = plant molecule, has lots of phosphate groups, responsible for binding positive ions
- **milk/dairy**
 - calcium, zinc compete with iron for absorption
- **phytochemicals**: tannins, polyphenols(catechins?) - found in tea
- **oxalate** (phytochemical)
 - organic acid found in leafy green veggies

Enhancers
- **Vitamin C**
 - helps with non-heme
- **MFP factor**
 - protein found in meat, fish, poultry that promotes absorption of NON-HEME iron
- Some **acids** help
Iron transport and storage

- special proteins necessary for iron absorption into intestinal cells:
 - **mucosal ferritin** accepts iron into intestinal mucosa cells, stores
 - if needed by body, gives to **mucosal transferrin**
 - mucosal transferrin gives to **blood transferrin**
 - blood transferritin gives to tissues
 - **hemosiderin** another storage form

- **iron loss**: **feces** (intestinal lining shed every three days), nails, hair, skin cells, **bleeding**
Iron transport & storage

- Muscle
- Bone
- Liver
- Tissues

To form myoglobin
To form hemoglobin & RBCs
To be stored
To make heme enzymes or to store in ferritin & hemosiderin

Transferrin
Iron Deficiency & Toxicity

• Anemia

- [Image: Hemochromatic liver tissue]

- [Image: Microcytic anemia- RBC's]

• Iron poisoning

• Hereditary hemochromatosis

p. 421

Stages of iron deficiency
- **most common nutrient deficiency in world!**
 - frequently occurs between 6-24 months of age!
- **first stage**: depletion of **stores**
- **second stage**: depletion of functional iron
 - I.e. iron in blood transferrin low
 - heme production slows
- **third stage**: iron-deficiency anemia
 - RBC production slows
 - those that ARE made are microcytic, hypochromic
 - old RBCs die as usual

Iron toxicity
- **UL set for level that causes stomach upset**
- **iron poisoning**
 - a leading cause of **poisoning death** in kids - OD on iron pills
 - their GI mucosa not as good at blocking
 - sx = N/V, diarrhea, tachycardia, dizziness, confusion, death
- **hereditary hemochromatosis**
 - genetic defect
 - **excessive iron absorption**, chronic iron overload
 - mild forms common! More common in men (don’t menstruate)
 - over time (years) can lead to severe organ damage
 - Good info at http://www.brown.edu/Courses/Digital_Path/Liver/hemochromatosis.html
Zinc functions

- Enzymes
- Cell membranes
- Gene regulation
- Immune system
- Other roles

Pages 423-427

Zinc roles fall into 3 categories: catalytic, structural, regulatory

- **enzymes**
 - helps in both catalysis and structure roles
- **gene regulation**
 - zinc required by proteins that regulate gene expression
- **immune system**: immune cells require zinc for proper enzyme function
- **other functions**
 - tons!
 - interesting: necessary for taste perception
 - stabilize cell membranes (structural)
 - fertility
 - protein/alcohol metabolism

regulation of zinc in body

- similar to iron, a few differences

- **absorption**
 - depends on zinc status: need, current stores
 - animal sources better absorbed
 - fiber, phytate, calcium supplements in combo with phytate decrease absorption
 - very high dose iron supplements (non-heme) decrease absorption (fortification not likely to)

- **transport**
 - protein “metallothionein” binds/stores zinc in manner similar to ferritin (mucosal or hepatic)
 - if needed, mucosal metallothionein releases zinc to be carried in bloodstream by albumin and transferrin

- **distribution**
 - many pancreatic enzymes contain zinc: pancreas absorbs Zn from circulation
 - enzymes released into SI, Zn later absorbed by intestinal cells again = enteropancreatic circulation

- **excretion**
 - primarily lost in feces (shed in lining of intestine)
 - also lost in skin, nails, urine, sweat, etc.
Zinc recommendations & sources

men: 11 mg/day
women: 8 mg/day

• Recommendations for zinc intake
 • men: 11 mg.day
 • women (NOT pregnant): 8 mg/day
 • pregnant - 11 mg/day
 • nursing - 12 mg/day

• Food sources
 • meats, seafood, organ meats
 • fortified cereals but don’t tend to be well absorbed

• Deficiency
 • uncommon in US
 • more prevalent in populations that subsist on cereals (Egypt?)
 • CAN lead to severe growth retardation, delayed sexual maturation,
 hair loss, immune dysfunction

• Toxicity
 • rare from diet
 • can occur with chronic use of supplements
 • can interfere with iron, copper absorption
 • reduces HDL, Increases risk of heart disease
 • Diarrhea, cramps, Nausea, vomiting
Iodide (I) Functions

- I⁻ vs. I₂
- Thyroxine (T₄) → Triiodothyronine (T₃)

\[
\text{NH}_2
\]
\[
\text{CH}-\text{CH-C-OH}
\]

- Gene regulation, cell metabolism

Page 432-435

- in food as iodide (I⁻), others
- poisonous form = iodine (I₂)

Major Functions

- Thyroid hormone synthesis (T3 and T4)
- T₄ converted to T₃ in target cells
- T₃ controls metabolic rate of cell
- important for gene regulation - ESPECIALLY critical for nervous system development (1st 6 months in utero)
- also increases glucose use and protein synthesis
Iodide transport, storage

- Free/bound to albumin or thyroid binding globulin
- Thyroid gland

- [best absorbed in inorganic form]
- easily absorbed in several forms (I⁻, IO₃⁻ etc.)
- travels in blood
 - free
 - bound to protein (albumin or thyroid binding protein)
- 75% ends up in thyroid!
- when not enough in diet, thyroid enlarges in attempt to get more - goiter
- excretion: kidneys
Recommendations & sources

- 150 µg/day
- goitrogens

Iodized salt (1/2 tsp. meets RDA for iodide)
Saltwater fish, seafood, molasses
Sea salt is a poor source (loss during processing)
Plant source dependent on soil content
RDA for adult is 150 µg/day (1 gram salt = 76 µg)
Average intake exceeds RDA

goitrogens
- chemicals (natural) in raw veggies (destroyed by cooking)
- inhibit iodide metabolism in thyroid - I.e. inhibit thyroid hormone synthesis
- not major concern in developed countries
Iodide Deficiency/Toxicity

Deficiency
- Insufficient T_4 (continual release of TSH)
- Growth of the thyroid gland (goiter)
- Drop in the metabolic rate
- Harmful during pregnancy (esp. last 2 trimesters)
- Cretinism
 - stunted growth and mental development related to iodide deficiency during pregnancy
- Excessive consumption of goitrogens (staples of diet)

Toxicity
- Thyroid hormone synthesis is inhibited
- Consumption of seaweed
- Upper Level is 1.1 mg/day