Lecture 10
Articulations III

2. **Glenohumeral Joint** (Shoulder):
 - Joint Characteristics:
 - Structural: **Synovial** (Ball & Socket)
 - Functional: **Diarthrotic**
 - Most freely moveable
 - Most Unstable
 - Most frequently dislocated joint

 - Articulating surfaces:
 a. Humerus: Rounded Head
 b. Scapula: Glenoid Fossa

 - Unstable articulating surfaces
• Stabilizing Structures:

1. **Girdle Bones**: Stabilize extremity
 a. **Acromion of Scapula**: Stabilize superior–posterior aspect
 b. **Coracoid of Scapula**: Stabilize superior–anterior aspect

2. **Articular Capsule**:
 - **Loosely binding capsule**: Provides little support
 - Stabilizes **ONLY when joint reaches normal limits**
3. Accessory Ligaments: *Intrinsic & Extrinsic*

a. Glenohumeral ligaments: Intrinsic
- Stabilize extremity
 - Distinct *thickening* in capsule

b. Extrinsic: Extra-capsular Ligaments:
- Stabilize Girdle
 1. **Coracoacromial Ligament**
 - Strengthen superior aspect
2. **Coracoclavicular Ligaments**
* (Trapazoid & Conoid)
⇒ Stabilize clavicle & scapula position

3. **Acromioclavicular Ligament**
⇒ Stabilize clavicle & scapula position
Acromioclavicular Ligament: Sprain
✓ Shoulder separation
✓ Most commonly sprained shoulder ligament

4. Muscle & Associated Tendons:
• Provide Greatest Degree of extremity stabilization
• "Rotator Cuff Muscles": 4 muscles: Move & Stabilize Extremity
 Supraspinatus, Infraspinatus, Teres Minor, Subscapularis
 ⇨ "SITS" muscles

* Hold humeral head against glenoid fossa
* Tendons extend around humeral head
 ➲ Tendons form: Rotator Cuff
5. **Accessory Cartilage**: Stabilize extremity

- **Glenoid Labrum**: *labrum* = “lip”
 - *Fibrocartilage* “lip” exaggerating & deepening Fossa
 - Increases surface area by **50%**
 - **Adding further stability (>20%)**
6. **Bursae**: Reduce friction where muscle & tendons pass joint structure

![Bursae Diagram](image)

Right Shoulder Injuries

![Shoulder Injuries Diagram](image)

3. **Tibiofemoral Joint** (Knee Joint)

![Knee Joint Diagram](image)
* Structural: **Synovial** (Hinge Joint*)
* Functional: **Diarthrotic**
 - Moveable – Flexion / extension
 - Bony articulations: Unstable

- Articulation between:
 a. **Femoral Condyles**
 b. **Tibial Condyles**

- Complex Stabilizing Structures
 a. **Articulating Capsule:**
 - *Not primary stabilizing structure*
 b. **Menisci** (Medial & Lateral):
 - Fibrocartilage pads
 - **Medial Meniscus:** Semilunar shaped
 - **Lateral Meniscus:** Circular shaped
• Function: Wedge shaped – Periphery is thicker
 ➔ Refine and stabilize joint movement
 ➔ Absorb shock
 ➔ Circulate Synovial Fluid

• Clinical: Medial meniscus more frequently injured
 ◆ Less mobile: Attached to the medial collateral ligament & joint capsule
 ✔ Tears during knee rotation

Meniscus tear and treatment
Partial meniscectomy
Repair with suture
c. Extracapsular Ligaments:

1. **Tibial (Medial) Collateral Ligament**
 - Attached to joint capsule and meniscus
 - Broad flat band of FCT

2. **Fibular (Lateral) Collateral Ligament**
 - Outside joint capsule
 - Narrow Rope of FCT

* BOTH; Stabilize medial & lateral leg motion

 ⇒ Prevent joint from “OPENING”
3. **Patellar Ligament**

- Stabilize Anterior joint surface

d. **Intracapsular Ligaments:**

1. **Anterior Cruciate:**
 - Limits forward movement of tibia

2. **Posterior Cruciate:**
 - Limits backward movement of tibia
ACL tear evaluation:

ACL: Positive Lachman Test

- **Terrible Triad**: Lateral force to knee
 - Force opens *medial aspect* of knee

> ACL, Medial Meniscus, Medial Collateral ligament
4. **Talocrural Joint** (Tibiotalar)

- Joint Characteristics:
 - Structural: **Synovial** (Hinge)
 - Functional: **Diarthrotic**
 - Weight bearing joint
 - Motion – Dorsiflexion
 Plantar flexion

- Fairly Stable Joint structure
 - Articulating bones: 3 bones
 a. **Tibia**: Medial malleolus
 b. **Fibula**: Lateral malleolus
 c. **Talus**

2 Locations of Stabilization:

1. **High Ankle Joint**: Distal Tibiofibular joint
 - Functional Classification: Synarthrotic Joint
 (Syndesmosis)

 note: Proximal tibiofibular joint: amphiarthrosis
• Stabilizing Structures:

a. **Interosseous Membrane**: Dense fibrous connective tissue between the bones

 ✓ **Function**: “Binds” the bones together
 ⇄ Prevents separation of leg bones

b. **High Ankle Ligaments**

1. **Anterior Tibiofibular Ligament**
2. **Posterior Tibiofibular Ligament**

 ✓ **Function**: “Binds” the bones together
 ⇄ Further Prevents separation of leg bones
2. Low Ankle Joint: Tibiotalar joint

* Attach the "FOOT" to the "LEG"

a. **Lateral Ligaments**: 3 ligaments

1. Anterior Talofibular ligament
2. Posterior Talofibular ligament
3. Calcaneofibular ligament

⇒ Function: Attach & prevent inversion

b. **Deltoid Ligament**: 3 slips (sections)

* Large Medial Ligament

⇒ Function: Attach and prevent Eversion

Clinical Significance:

1. **Synovial Joint Dislocation**: Luxation
 - Articulating surfaces forced out of position
 * Partial dislocation: Subluxation
“Double Jointed” or *Hypermobility*:

- Permit greater range of motion

* Causes: Strong genetic basis
 - a. Joint misalignment or abnormal bone structure
 - b. Collagen defect
 - c. Injury
 - Weakly stabilized joints
 - More prone to luxation

- **Injury**: Displacement can cause *joint structure damage*
 - Cartilage, ligaments, menisci

2. **Sprain**: Over stretching or tearing of ligament or capsule

- Connective tissue damage
 - Cause: *Joint over extension*
 - Repair: ~ 3–4 weeks
3. **Strain**: Over stretching or tearing of **Muscle** or **muscle tendon**
 - Muscle & Connective tissue damage
 - **Cause**: Joint over extension
 - **Repair**: ~ 3–4 weeks

4. **Bursitis**: **Bursa inflammation**
 - **Cause**: Direct fall or blow, overuse or infection