Organ Components:
- Kidneys, Ureters, Bladder, & Urethra

Function: *Homeostasis of Body Fluid*

Kidney Function: "Blood filter / modifier"
1. Regulates blood concentrations of
 - **Electrolytes** (Na⁺, Cl⁻, Ca²⁺, K⁺)
2. Regulates **Blood Volume & Pressure**
3. Regulates **blood pH**
4. Eliminates **Organic Waste**: Urea & uric acids
 - (protein), urobiligen
5. Secretes **Hormones**: Erythropoietin & renin
Produce blood filtrate: **Urine**
- Excess water
- Excess Electrolytes & Minerals
- Excess Organic waste & Nutrients

- Maintain: *Solute Concentration & Volume*

NOTE: Liver functions to maintain *Nutrient Concentration*: Glucose, Fatty Acids etc.

Filtration

- **Mechanism:**
 - a. Blood Filtration
 - b. Filtrate re-absorption

GOAL: Separate *valuable blood constituents* from *excess and waste*

- **Result:** **URINE FORMATION**

 - Urine: *Excess & waste*
 - Valuable constituents: Re-absorbed BACK into blood
• **Kidney Filtering Rate:**
 - Kidney Blood Perfusion Rate: 20–25% Cardiac Output
 - 1.2 liters Blood through kidneys per min
 - Filtrate formation: 180 liters/day

• **Kidney Urine Production Rate:**
 - Urine Produced: ~1 – 2 liters/day
 - Blood Volume filtered every 40 mins
Functional Kidney Unit: NEPHRON

- Human Kidney contains >1 million nephrons
 - Each manages a small volume of blood

Mechanism of Action: Three Step Process:

1. Filtration: Bulk separation by SIZE
 - Separate all LARGE blood components from small soluble
 - Blood Cells, Large (functional) Proteins
2. **Re-absorption:**
- Return to blood **all valuable small filtered components**
 - Glucose, fatty acids, minerals, electrolytes, etc

3. **Secretion:**
- Micromanage blood by adding back into filtrate unneeded components
 - Components added back will be excreted with urine
 - Primarily Potassium
Blood Filtration: Separation by SIZE

- Site: Renal corpuscle

3 Layer Filter:
- Glomerulus, Basement membrane, Podocytes

Figure 1

Figure 2

- Filtration processes of podocytes (blue and green)
a. **Glomerulus**: “Tuft of Fenestrated Capillaries”
 - **Fenestrae**: Pores within vessel wall

 ![Diagram of glomerulus]

 - Increases permeability by 100–400x
 - Increases VOLUME of filtrate

 ![Diagram of filtration]

 - **Hydrostatic pressure** forces separation
 - **LARGE valuable components** are NOT filtered
 - **Blood cells & LARGE & medium plasma proteins** remain in Blood
 - **Small components** filtered through fenestrae

 ![Diagram of filtration process]
b. **Basement Membrane** (Basal Lamina)
 - **Thick Glycoprotein** (Lamina Densa)
 - Prevent filtration of *medium & most small size proteins*

![Diagram of filtration membrane](image)

(c) **Podocytes with Interlacing pedicles:**
 - *Filtration slits* further retain *most small proteins*
Filtered Components referred to as FILTRATE

- Contains BOTH: valuable soluble constituents & waste
- “Caught” by Glomerular Capsule
- 180 /filtrate /day

Filtrate re-absorption:

- Reclaim valuable filtered components
- Site: Renal Tubule
- Return to blood through surrounding capillaries

Renal Tubule: Specifically reabsorb Filtrate components

a. Proximal Convoluted Tubule
 - ~99%: Nutrients Reabsorbed
 - ~65%: Salt & Water Reabsorbed

b. Loop of Henle
 - ~20%: Additional Salt & Water Reabsorbed
 ⇒ Total of ~85% Salt & Water
Filtrate Secretion:

a. **Distal Convoluted Tubule**
 - Secretion of excess ions (K^+) & minerals & toxins
 - Further **re-absorb** Na^+

• Nephron completion:
 - Filtrate remaining exits Distal convoluted Tubule
 - Referred to as **URINE**
 - NO further significant adjustments to urine composition are made EXCEPT water content
 - **Urine Collected by the Collecting Ducts**

• Collecting Ducts will **alter urine water composition**
 - **Urine Concentration**

PCT Epithelial Reabsorption

- Components Re-absorbed:
 - 65% Water & Salt
 - 99% Organic Nutrients

- Utilizes facilitated, primary & secondary active transport
- Accounts for ~6–10% of Basal metabolic Rate

1. Basolateral Cell surface:
 - Primary Active: \(\text{Na}^+ / \text{K}^+ \) Pump
 - Pumps \(3\text{Na}^+ \) OUT & \(2\text{K}^+ \) into cell

 ![Diagram of basolateral cell surface](image)

 - Goal: Decrease intracellular \(\text{Na}^+ \)
 - Goal: Create gradient for \(\text{Na}^+ \) diffusion INTO cell
2. Apical–Luminal cell surface:
 - Co-transport of Na⁺ & Cl⁻
 - Uses concentration gradient created by Na⁺/K⁺ pump
 - Na⁺ diffusion INTO cell
 - Creates positive Electrical Gradient
 - Draws in anion Cl⁻

3. Basolateral Cell surface:
 - Facilitated diffusion of Cl⁻
 - Uses concentration gradient to diffuse Cl⁻ out of cell

4. Apical–Luminal cell surface
 - Na⁺ & Cl⁻ inside cell increases cellular osmotic pressure
 - Stimulates Water absorption
Results: a. Reabsorbed Na^+, Cl^-, Water
b. Reduced filtrate volume by $1/3$

- **Glucose Reabsorption : PCT**

1. **Apical – Luminal Cell surface:**
 - **Co-transport** of Na^+ & GLUCOSE
 - Uses *concentration gradient* created by Na^+/K^+ pump

2. **Basolateral Cell surface:**
 - **Facilitated diffusion** of Glucose
 - Uses *concentration gradient* to diffuse glucose out of cell
 - GLUT2 Channels

- **Effectiveness:** 100% Glucose REABSORPTION
Clinical Application:

- **Normal Blood glucose concentration:**
 75–110mg/dL blood
 → Glucose Channels reabsorb ALL glucose

Glucose Reuptake

- **Diabetes Mellitus:** Elevated blood glucose
 > 180mg / dL blood
 → Glucose Channels can NOT reabsorb ALL glucose
 ✓ Glucose excreted in URINE: GLYCOSURIA
Following PCT Reabsorption:

- ~99% Nutrients Reabsorbed
- ~65% Salt & Water Reabsorbed

- Filtrate volume reduced by 2/3

Reabsorption in the Nephron