Hemostasis
Lecture 19

HEMOSTASIS: Cessation of Bleeding

- Hemo = “Blood” ; stasis = “standing”

3 major steps in Hemostasis:

1. **Vasoconstriction**: Decrease downstream blood flow and subsequent blood loss
2. **Platelet plug**: Form temporary seal over vessel opening
3. **Coagulation**: “Fibrin Web” secures platelet plug

How does blood clot?

Usually, every time you have a cut or bruise, your blood clots to stop the bleeding.
No vessel damage: **Endothelial cells secrete**

a. **Nitric Oxide** (EDRF)
 - Strong vasodilator

b. **Prostacyclin**:
 - Prevents Platelet aggregation

c. **Enzyme CD39**: Converts plasma ADP to AMP
 - Prevents Platelet activation

NOTE: ADP promotes platelet aggregation
Vessel Damage:

1. **Endothelial Cell damage:**
 a. Reduce Nitric Oxide secretion
 b. Release Endothelin (peptide) ➔ *Increased vasoconstriction*
 c. Reduce Prostacyclin: ➔ *Increased platelet “stickiness”*
 d. Less Active CD39: ➔ *Increased ADP; Platelet Activation*
 e. Secrete vonWillebrand Factor (vWF) ➔ *Bind Platelets and collagen*

2. **Exposes underlying collagen:**
 a. Platelets adhere to collagen & other platelets ➔ Aided by von Willebrand factor
 • GLYCOPROTEIN: Produced by endothelial & CT cells
 • Links platelets & collagen

 ➔ *Begin Platelet plug formation*
b. **Platelets Activated by binding vWF:**

- Activated platelets **Degranulate:**

 "Platelet release reaction"

- Secrete: **Prothrombins: promote clot formation**

Prothrombins: **ADP & Thromboxane A_2**

Promote:
1. Platelet cross linking
2. Platelet activation and platelet release Rxn

- Secrete:

 * Stimulate: **further platelet activation & binding**
Platelet Plug: Multi-layer platelet formation (thrombocyte)

“Positive Feedback Loop”

Platelet Plug Formation

HEMOSTASIS

1. Vessel Injury
2. Vascular Spasm
3. Formation of Platelet Plug
4. Coagulation
3. **Coagulation**: “Fibrin web” formation
 - Platelet plug reinforced and stabilized by Fibrin web
 - Clot formation
 - Soluble fibrinogen converted into insoluble Fibrin
 - Two Clotting Pathways
 1. Intrinsic
 2. Extrinsic

Coagulation Cascade
1. **Intrinsic Pathway**:
 - Clot produced by blood constituents

a. **Initiation**: Vessel damage & exposure to negatively charge surface
 - Collagen proteins: Exposed connective tissue
 - **Contact Pathway**

b. **Factor XII**: Activated (XIIa) by collagen
c. **XIIa initiates a long cascade of plasma protein factor activation**
 - Result: Activates **Factor X**
 - Converts: Prothrombin to **active Thrombin**
 - Converts: **Soluble Fibrinogen into insoluble Fibrin**

2. **Extrinsic Pathway**: "Short-cut"
 - **Damaged tissue initiates pathway**
 a. **Tissue Thromboplastin (III):** Vessel wall glycoprotein
 - *Bypasses steps in intrinsic cascade*
 - *Activates: Factor X (Common step)*
 b. **Factor Xa** : Converts Prothrombin to Thrombin
c. **Thrombin**: Converts Fibrinogen to Fibrin
 - *Conversion to insoluble fibrin occurs more quickly*
Anticoagulents: ANY Factor preventing Clot Formation

Blood Thinners

1. **Aspirin**: Inhibits prostaglandin production
 - Inhibit Thromboxane A₂: Inhibit platelet plug

 Therapeutic: Stroke, DVT (deep vein thrombosis)

 BUT: Prolongs Bleeding: Don’t use after surgery or last trimester of pregnancy

2. **EDTA**: Ethylenediaminetetraacetic Acid
 - Chelate (bind to) calcium

 Inhibit clotting cascade

3. **Heparin**: Activates Antithrombin III
Fibrinolysis: Clot breakdown

- **Plasmin**: *Fibrin digesting enzyme*
 - Converted from: inactive *Plasma plasminogen*
 - Activated by:
 1. Damaged endothelium factors
 - a. Tissue plasminogen Activator (t-PA)
 - b. Urokinase
 2. Activated clotting factors: aXII, aXI, Kallikrein

Therapeutically: tPA & Urokinase

- “Clot Busters”: Catheter directed Thrombolysis
 - DVTs: Deep Vein Thrombosis
 - PE: Pulmonary Embolisms
 - MI: Myocardial infarct
 - Ischemic Stroke
 - IV Catheter restoration: 25% blocked by clots