Lecture 1

Physis = “nature”; ology = “study of”

Study of how & why

Mechanisms:

Cause & Effect
Physical & chemical factors responsible for vital human functions

* Incorporates: Anatomy, Chemistry & Physics

HOMEOSTASIS:

- Homeo = "same, alike"; Stasis = "standing"
- Maintenance of an internal constancy

~ Walter Cannon:
1871 – 1945 (1932)

Importance:

- Provides physiology a framework for study
- Function & processes are designed to: maintain dynamic consistency
Health:

- Determined by the body’s ability to maintain homeostasis
- **ALL** Body parameters (measurable value) subject to change are evaluated
- **ALL** Body parameters evaluated against the “Normal variance” or “Normal Range”

"Normal": Healthy Blood composition

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial pH</td>
<td>7.35-7.45</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>24–28 mEq/L</td>
</tr>
<tr>
<td>Sodium</td>
<td>135–145 mEq/L</td>
</tr>
<tr>
<td>Calcium</td>
<td>4.5–5.5 mEq/L</td>
</tr>
<tr>
<td>Oxygen content</td>
<td>17.2–21.0 ml/100 ml</td>
</tr>
<tr>
<td>Urea</td>
<td>12–35 mg/100 ml</td>
</tr>
<tr>
<td>Amino acids</td>
<td>3.3–5.1 mg/100 ml</td>
</tr>
<tr>
<td>Protein</td>
<td>6.5–8.0 g/100 ml</td>
</tr>
<tr>
<td>Total lipids</td>
<td>400–800 mg/100 ml</td>
</tr>
<tr>
<td>Glucose</td>
<td>75–110 mg/100 ml</td>
</tr>
</tbody>
</table>

- Maintenance of Homeostasis:
 - Components:
 1. **Sensors**: Tissues which detect changes in body parameters
 - Nervous & glandular tissue

Hypothalamus: Thermosensitive neurons
Gage changes against a reference value:

Set Point

- Determined as: *AVERAGE central value*

2. **Integrators (Control Center):** Tissues which evaluate parameter deviations

- **Central Nervous System & Glands**

Integrators:

- Exercise: Increase in body heat
- Anterior Hypothalamic nucleus
- Evaluate: **Degree & Direction of deviation**

3. **Effectors**: (Compensating tissues)

- Tissues opposing/correcting deviation
 - Muscle & glands
- Function: Re-establish/defend set point

![Diagram of temperature regulation]

Mechanism: Negative Feedback

- Maintains: All homeostatic parameters
 - Effector activity opposes the stimulus
 - Effectors have a “corrective action”
 - Try to re-establish set point

![Diagram of negative feedback loop]
Compensate for imbalance

- Eating
- Blood glucose
- Pancreatic islets (of Langerhans)
- Insulin
- Cellular uptake of glucose
- Blood glucose

Result: Dynamic Constancy

- NOT constant BUT variable within **limits**
- Limits: “Normal Ranges”
- Average parameter variance
- Central Value: Set point
Generally Homeostasis involves:

2 antagonistic effectors

- Sweating
- Shivering

Result: Maintenance of "Dynamic Constancy"
- Deviations from set-point are corrected

Mechanism: Negative feedback

Target: All parameters subject to change

WHY ??????
- Maintain Optimum running environment

Summary: Homeostasis

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial pH</td>
<td>7.35–7.45</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>24–28 mEq/L</td>
</tr>
<tr>
<td>Sodium</td>
<td>135–145 mEq/L</td>
</tr>
<tr>
<td>Calcium</td>
<td>4.3–5.5 mEq/L</td>
</tr>
<tr>
<td>Oxygen content</td>
<td>17.2–21.0 ml/100 ml</td>
</tr>
<tr>
<td>Urea</td>
<td>12–35 mg/100 ml</td>
</tr>
<tr>
<td>Amino acids</td>
<td>3.3–5.1 mg/100 ml</td>
</tr>
<tr>
<td>Protein</td>
<td>6.5–8.0 g/100 ml</td>
</tr>
<tr>
<td>Total lipids</td>
<td>400–800 mg/100 ml</td>
</tr>
<tr>
<td>Glucose</td>
<td>75–110 mg/100 ml</td>
</tr>
</tbody>
</table>
Disease:

- “Inability to compensate for deviation”
 - Incapable of maintaining homeostasis
 - Non-optimal running environment
 - Old age
 - Genetic Mutations
 - Malnutrition
 - Pathogens: bacterial / viral / fungal
 - Environmental conditions
 - etc.

Health: Contingent upon the ability to:

a. Sense & integrate deviations
b. Initiate correct effector responses
 - Re-establish dynamic consistency

~ Normal Blood sugar: 75mg – 100mg / 100ml
Diabetes Mellitus:
- Inability to regulate blood sugar

Positive Feedback:
- Feedback amplifies change until stimulus is gone
 - *Effectors increase stimulus*
 - Blood clotting response
 - Parturition
 - Increase rate of change
 - BUT does NOT by itself maintain homeostasis

Examples: Blood Clotting and Child Birth

Positive Feedback: Child Birth
- Oxytocin stimulates muscular contractions of the uterus
- More oxytocin is released
Chemistry Review:

- Molecule Measurements:
 1. Gram molecular weight: Mole
 2. Solution Concentration: Molality

Mole:

- Unit of Atomic / Molecular Measurement
 - Number of Molecules within 22.4 liter of gas at standard temp. and pressure
 - Amount of substance expressed in grams containing as many atoms

1. Gram molecular weight

- Combined atomic weight of one mole of particles (atoms or molecules)
 - Calculate the formula weight in grams
 example: 1 mole of ethylene = ____ grams
 \(\text{C}_2\text{H}_4 \) (ethylene)
1 mole of ethylene = ____grams

C: Atomic mass = 12.01
H: Atomic mass = 1.01

Gram Molecular Weight: 1 mole ethylene

\[
\begin{align*}
12.01 \times 2 &= 24.02 \\
1.01 \times 4 &= 4.04 \\
\text{sum} &= 28.06 \text{ gms}
\end{align*}
\]

\[\Rightarrow 1 \text{ mole of ethylene} = 28.06 \text{ gms}\]
Practice:

> **Gram Molecular Weight? Glucose C₆H₁₂O₆**

1. mole of glucose = _____ grams

Practice:

> **Gram Molecular Weight? Glucose C₆H₁₂O₆**

\[
\begin{align*}
12.01 \times 6 &= 72.06 \\
16.00 \times 6 &= 96 \\
1.01 \times 12 &= 12.12 \\
\text{sum} &= 180.18 \text{ gms}
\end{align*}
\]

1. mole of glucose = ~180 grams

Practice:

> **Gram Molecular Weight? NaCl**

\[
\begin{align*}
22.99 \times 1 &= 22.99 \\
35.45 \times 1 &= 35.45
\end{align*}
\]

1. mole of NaCl = 58.44 grams
2. Solution Concentration:

- **Solution:** homogeneous mixture of 2 (or more) substances in one state

a. **Solvent**
b. **Solute**

- Solid liquid or gas

a. **Solvent:** liquid

- Molecule present in greatest amount

 * **Causes** distribution or dissociation of another substance
Distribution: Spreading out of molecules – NO bonds broken

- **Glucose** (Solute)
- **Water** (Solvent)

Dissociation: Separating of molecules – breaking bonds

- **Salt (NaCl)** (Solute)
- **Water** (solute)

b. **Solute**:

- Molecule present in *lesser amounts*
- Subject to *distribution or dissociation*
Water: Best known biological solvent

A. Quantity:
- Living organisms typically 70%–95% water
 - Greatest Concentration
 - Water diffuses between molecules
 - Distribute – Spread out molecules

B. Polar molecule: Separation of charge within neutral molecule
- Slightly negative
- Slightly positive
- Polarity allows water to orient around ions
- Large numbers of water overwhelm & break ionic bonds
Dissolution of Sodium Chloride

Solution Concentration:
- Expressed as *concentration of solute*
 - Units: **Molality** (m):
 - Moles of solute per liter of solvent
 - Solute added to 1 liter (1Kg) H₂O

- Resulting solution is *greater than a liter*
Molarity calculations

- **1 m Glucose =**
 1 mole glucose / 1 L H₂O
 180g glucose / 1 L H₂O

- **2 m Glucose =**
 2 moles glucose / 1 L H₂O
 360g glucose / 1 L H₂O

- **1 m NaCl =**
 1 moles glucose / 1 L H₂O
 58.44g glucose / 1 L H₂O

\[\text{Molarity (M): Moles solute per liter of solution}\]

\[\text{Reflects the exact number of solutes introduced per 1 L H₂O}\]
Which solution = ONE molal (m)?