Hemoglobin & O₂ Transport:

- Total Blood O₂ = 20 mls O₂/100 mls
 - 0.3 mls dissolved
 - 19.7 mls carried on Hemoglobin
- ~98% O₂ carried on Hemoglobin

Indicates importance of Hemoglobin
- Majority of oxygen can NOT be carried dissolved in the blood
- Oxygen MUST be transported on hemoglobin due to low solubility
% Hemoglobin Saturation:
* Dependent upon 2 factors:
 1. **Blood PO\textsubscript{2} (concentration)**
 2. **Hemoglobin O\textsubscript{2} Affinity**

 ~ **Variable affinity**

PARTIAL PRESSURE OF OXYGEN (PO\textsubscript{2})
* High PO\textsubscript{2} (concentration)
 * Favors: *Hemoglobin Loading Reaction*
 * Forms: **Oxyhemoglobin**

\(\text{Hb} + 4\text{O}_2 \rightarrow \text{Hb(O}_2\text{)_4} \)

% Hemoglobin Saturation: Related to PO\textsubscript{2}
* Greater the PO\textsubscript{2} the higher the saturation

* **Oxyhemoglobin Dissociation Curve**
\[\text{PO}_2 = 100 \text{ mm Hg (Arterial PO}_2) \]
\[\% \text{ saturation} = \sim 98 \% \]

\[\text{BLOOD } \text{O}_2: \text{ 20 mls O}_2/100 \text{ mls blood} \]

\[\text{PO}_2 = 40 \text{ mm Hg (Venous PO}_2) \]
\[\% \text{ saturation is} = \sim 75 \% \]

\[\text{BLOOD } \text{O}_2: \text{ 15 mls O}_2/100 \text{ mls blood} \]

\[\text{O}_2 \text{ delivered: 5 mls O}_2 / 100 \text{ mls blood} \]

✓ **Significance:** Even in low partial pressures, Hemoglobin still has HIGH Oxygen saturation

Ensures a significant blood oxygen reservoir
1. **High O₂ Affinity**: Bind O₂ tightly
 - **LUNGS**: *Carry* O₂ to tissue
 - **Hemoglobin loading**

2. **Low O₂ Affinity**: Release O₂
 - **TISSUES**: *Release* O₂ to tissue
 - **Hemoglobin Unloading**

![Hemoglobin Dual Affinity Diagram](image)

Diagram Descriptions:
- **Tissue cells**: Where O₂ is released.
- **Loading of CO₂**: The process of CO₂ being absorbed into the blood.
- **Unloading of O₂**: The release of O₂ from hemoglobin.
- **CO₂ + H₂O → H₂CO₃ → H⁺ + HCO₃⁻**: Water and Carbonic acid reactions.
- **Plasma**: The liquid part of blood.
- **Systemic capillary**: The capillary bed where gas exchange occurs.
- **Red blood cell**: The primary site of O₂ transport and release.
Hemoglobin Affinity Changes: Caused by changes in CO₂ concentration (PCO₂)

CO₂ Diffusing from Tissues

- 7% dissolves in the blood
- 22% combines with hemoglobin
- 77% is converted to bicarbonate ions

Carbon Dioxide Transport:
Carried in blood in 3 forms:
1. Dissolved in plasma (~10%)
 ✓ Very soluble
2. Bound to Hemoglobin (~20%)
 ✓ Carbaminohemoglobin
3. Bicarbonate: HCO₃⁻ (~70%)

Bicarbonate Formation:
• PRIMARY form of CO₂ transport
1. CO₂ combines with H₂O
 ➜ Facilitated by RBC enzyme: Carbonic Anhydrase
2. Forms Carbonic Acid
 ➜ CO₂ + H₂O → H₂CO₃
3. Carbonic Acid dissociates into Bicarbonate & H⁺ Ions
 ➜ H₂CO₃ → H⁺ + HCO₃⁻
Significance: H^+ by-product \rightarrow Blood Acidity

Effects of $\uparrow H^+$:

1. H^+ Binds Hemoglobin
 - RBCs: Positively charged due to "HYDROGEN TRAPPING"

2. Increased Hemoglobin Acidity
 - Low pH reduces Hemoglobin affinity
 - FUNCTIONALLY DENATURES Hemoglobin
 - Promotes: “Hemoglobin Unloading”
Physiological Correlation:

* Anaerobic Exercise: Lactic Acid

 - Decreases hemoglobin oxygen affinity
 - Increases Oxygen unloading to TISSUES
TISSUES: Hemoglobin Affinity: LOW

- **CO₂ plasma concentrations HIGH**
 - \(H^+ \) concentrations increase
 - \(H^+ \) binds hemoglobin

\[\Downarrow \text{Hemoglobin Affinity: } \text{Unload O₂ to tissues} \]

LUNGS: Hemoglobin O₂ Affinity HIGH

- **Low Alveolar \text{PCO₂}** drives \text{CO₂ diffusion}

\[\Downarrow \text{Reactions occur in reverse} \]

- **Carbonic Acid** converted into back into: \text{CO₂ & H₂O}
 - Facilitated by: \text{Carbonic anhydrase}
 - \text{CO₂ exhaled}

- **Hemoglobin’s affinity increases** as \(H^+ \) concentration decreases
 - \(H^+ \) is combined with bicarbonate
1. MOST Oxygen carried on Hemoglobin = ~98%
2. O₂ delivered to tissues = 5 ml (≈25%)

3. Venous blood maintains a HIGH O₂ concentration
 ✓ Hemoglobin saturation = ~ 70-75%

4. Hemoglobin affinity directly affected by: pCO₂ and pH
5. Primary stimuli for controlling breathing are pCO₂ and pH